

Bohdan Bulka

MUSIC IN THE SPACE OF ALL POSSIBLE CONSCIOUS EXPERIENCES

МУЗИКА У ПРОСТОРИ УСІХ МОЖЛИВИХ СВІДОМИХ ПЕРЕЖИТТІВ

УДК 130.2:78.01

DOI: 10.31500/2309-8813.21.2025.345531

Bohdan Bulka

Master's in Musical Art

email: gottfried.dev@gmail.com

Богдан Булка

магістр музичного мистецтва

orcid.org/0009-0009-5887-7618

Анотація. The author lays the groundwork for considering a cosmic-scale space of possible conscious experiences. He introduces the principles underlying a vision of the cosmic potential of an intelligent civilization, in which computation forms the core. The author demonstrates that consciousness can arise in substrates different from biological human brains, particularly in computers. He concludes that, ultimately, such a cosmic-scale space of conscious experiences is possible and that intelligent beings will be able to exercise fine-grained control over their phenomenal content. This prospect raises challenges for disciplines such as the philosophy of art and the philosophy of music. For example, the traditional approach to classifying the arts by the physical media in which artworks are created comes under scrutiny. The author proposes a framework for systematizing all possible conscious experiences, including those related to the perception of traditional artworks, and applies this framework to the question of generalizing music to many other, non-biological, conscious systems.

Keywords: definition of music, philosophy of music, philosophy of mind, philosophy of art, information technology.

Introduction. It is also possible to develop a science of consciousness and determine what computations or patterns of matter behavior give rise to what subjective phenomena (Chalmers, 2010, p. 40). Thus, in the future, it will potentially be possible to create artificial subjective experiences and have fine-grained control over their phenomenal content. Also, biological humans will be able to expand their phenomenal content and implement new phenomenal properties.

This perspective indicates that it might be possible in the future to profoundly extend the content of human consciousness and make it a medium for creative expression. Thus, the following questions arise: What place does art in general and music in particular have in this new reality? How to describe artistic experiences in fine detail? Is the traditional classification of arts by a physical medium (Walker, 2021; Multimedia Art, 2021; Annemarijn-Ingelaat, 2020) still going to be relevant, or some new approach to the classification of arts will be required, based on the availability of a rich set of means of expression in the form of properties of subjective experience? Can music be understood by a conscious system, significantly different in its scope, form and content from biological human brains? And what do we mean by "music," in the context of these diverse forms of consciousness?

These questions lie in the area of study of philosophy of art and music. They will also become ever more practical and pressing as the technology, described above arrives: they will come into the purview of neuroscience and a science of consciousness. For example, we will need to study scientifically how to represent phenomenal properties. Already today, a quest for neural correlates

of consciousness exists (Chalmers, 2010, p. 59) and in the future this research should only expand to encompass more subjective phenomena and other possible substrates of consciousness.

Literature Review. Ray Kurzweil formulates the Law of Accelerating Returns (Kurzweil, 2005, p. 45) which, among other things, predicts exponential growth of information technologies. According to his predictions, human civilization will become a solar-system-scale civilization, harnessing the power of our Sun and the matter in our solar system for highly complex and rich computation by the beginning of the 22nd century (Kurzweil, 2005, p. 252; Kurzweil, 2005, p. 253). David Deutsch formulates the rule that unless the achievement of some goal is not prohibited by laws of nature, it is achievable, given the right knowledge (Deutsch, 2011, p. 56). So even if Kurzweil's predictions aren't fulfilled in time, the technologies he describes are possible to implement at some point in the future, because they don't violate any laws of physics.

Tegmark (2014) approaches the problem of consciousness from the standpoint of a physicist. Instead of asking "what are *neural* correlates of consciousness," he asks "what are *physical* correlates of consciousness." He suggests a number of properties that a piece of matter that is conscious should possess. Tegmark's properties are presumably more general than the properties of a biological brain. Thus, the scope of possible conscious experience broadens.

Harris (2010) postulates the concept of "the moral landscape"—it is a space of all possible conscious experiences. But, in contrast to my concept of the space of phenomenal properties, his space does not necessarily consist of phenomenal properties but rather of whole experiences. Also, Harris is interested in only one dimension in this space of experiences, namely, the dimension of suffering on the one end and well-being on the other. Whereas I am interested in all possible dimensions for phenomenal properties.

Kania (2011) and Scruton (n.d.) take sound to be a foundational part of music. But, as I show in the paper, it is conceivable to have an experience that is the same in such dimensions as temporal dynamics, intensity, variability and other properties of subjective experience and in the scope of phenomenal properties as an experience of a musical piece as it is traditionally conceived and it is not certain that this experience couldn't be interpreted as musical. Also, neither Kania nor Scruton considers the possibility of the kind of vast space of possible conscious experiences of which I talk in this paper, and they don't consider music in this context.

Aim of the Paper. This article applies existing work in philosophy of consciousness and of technology to the domain of art and music. In contrast to existing work on the philosophy of music, this work considers art and music within the vast space of possible conscious experiences that I outline. It attempts to create a framework for systematizing the plethora of possible experiences, including artistic experiences in general and musical experiences in particular, and to generalize music to many other, non-biological conscious systems. It attempts to produce motivation for further research in the areas of philosophy of art and music and in neuroscience.

Results and Discussion. *The Cosmic Potential of Civilization.*

"Like an explosive awaiting a spark, unimaginably numerous environments in the universe are waiting out there, for aeons on end, doing nothing at all or blindly generating evidence and storing it up or pouring it out into space. Almost any of them would, if the right knowledge ever reached it, instantly and irrevocably burst into a radically

different type of physical activity: intense knowledge-creation, displaying all the various kinds of complexity, universality and reach that are inherent in the laws of nature, and transforming that environment from what is typical today into what could become typical in the future. If we want to, we could be that spark."—David Deutsch, *The Beginning of Infinity* (2011)

Physicist David Deutsch formulated the rule that unless something is limited by the laws of nature, it is possible to achieve, given the right knowledge (Deutsch, 2011, p. 56). In his book, *The Beginning of Infinity*, he presents a thought experiment, picturing a seemingly blank segment of the cosmos, the size of a solar system, where knowledge of how to do transmutation is applied to create a thriving civilization (Deutsch, 2011, p. 66). To create this civilization, Deutsch doesn't use

anything that violates the laws of physics. Thus, in principle, the cosmos can be transformed by intelligence to a great degree, filling it with complexity, richness, and life.

Inventor and thinker Ray Kurzweil formulated the Law of Accelerating Returns (Kurzweil, 2005, p. 45). It is a theory that the increase of order (and complexity) in the universe is an evolutionary process with accelerating returns: knowledge, obtained from one stage of evolution is used in the next stage. This also applies to technological evolution and to the evolution of information technology.

In the case of information technology, the goal of evolution is to increase computational power per unit cost. And the dynamics of this evolution are described by an exponential curve. For example, Moore's Law—an example of a single paradigm within the broader evolutionary process—states that the price-performance of computer chips (the number of transistors per dollar) doubles every two years (Kurzweil, 2005, p. 45). For example, in 1980 one could purchase computing power equivalent to 100 operations per second for one (2023-adjusted) dollar; by 2023, that same dollar could buy 100 billion operations per second (Kurzweil, 2024, p. 13).

Kurzweil speculates that the growth of computational power could eventually extend from the scale of human cognition to that of cosmic-scale civilizations. Such a scenario serves as an imaginative provocation, suggesting how profound technological development might transform both our material environment and the horizons of consciousness (Kurzweil, 2005).

Consciousness. Consciousness, in the sense I use it in this paper is synonymous with subjective experience. As Nagel (1974) put it, it is “what it is like” to be in a conscious state. Another way to describe the type of consciousness I discuss is to call it “phenomenal” (Chalmers, 1995a).

The “hard problem” of consciousness states that it is impossible to use a reductive approach to explaining consciousness: consciousness cannot be reduced to the underlying functions. Instead, the existence of subjective experience, or the quality of “what it is like” to be a conscious system, is to be taken as a first principle (Chalmers, 1995a).

The “hard problem” is interpreted differently by different schools of philosophy of mind. Naturalistic dualists state that an additional law, over and above the laws of physics, is needed to explain consciousness (Chalmers, 1995a). Physicalists, on the other hand, state that consciousness can be fully explained in terms of existing laws of physics (Chalmers, 2010, p. 111).

Either way, consciousness is tightly tied to the physical world and to functions of the physical systems that embody it (Chalmers, 1996, p. 217; Chalmers, 2010, p. 40). Likewise, both naturalistic dualists and physicalists hold that it is possible to study consciousness scientifically (Chalmers, 2010, p. 40).

Phenomenal Properties. A mental state has a *phenomenal character*. This phenomenal character is characterized by *phenomenal properties* (or *qualia*). These phenomenal properties “characterize what it is like to be in” a mental state that has a phenomenal character (Chalmers, 2010, p. 104).

For example, let's say I stand in my parents' garden, hold an apple in my hand and watch that apple. I will see the red color of the apple and its shape. I will feel the smell of the various plants and fruits in the garden. I will feel the light wind blowing in my face. I will feel bright sunlight in my eyes. I will feel joy from being in such a poetic place. I will experience memories from my childhood as I was playing in this garden. All of these characteristics of my experience of being in the garden will have phenomenal properties—the property of redness and roundness of the apple, of the sensation of smell that draws my attention, the various properties of the childhood memories and so on. That is, the phenomenal character of the mental state of being in the garden is comprised of these phenomenal properties.

Phenomenal properties are irreducible building blocks of the phenomenal character of mental states (Chalmers, 2010, p. 252). They exist objectively: two mental states can share one and

the same phenomenal property. If all the phenomenal properties are shared in two mental states, these states are identical (Chalmers, 2010, p. 382).

If we speak about art, any particular means of expression in any particular art form can have a material and a phenomenal component. The material component describes the means of expression within the context of the medium and in relation to neurophysiological processes. The phenomenal component describes the means of expression in the context of its phenomenal properties. To speak in terms of phenomenology, any means of expression consists of phenomenal properties.

The Vast Space of Conscious Experiences. There is a probability that nature allows for the existence of various systems—in addition to biological brains—endowed with subjective experience (Chalmers, 1996, p. 313; Koch, 2019, p. 171; Tegmark, 2014). Scientists and philosophers discuss the search for patterns of matter behavior that give rise to consciousness (Tegmark, 2014). These patterns could possibly be more general than what we find in biological brains. Thus, a broader spectrum of conscious systems is possible.

Taking into account the potential of complex computation and intelligence to spread around at the cosmic scale, as discussed above, one could suppose that the quantity of possible conscious systems, their diversity, scope and inner richness, too, is measured in cosmic scales and that biological brains are just a tiny drop in this ocean (Kurzweil, 2005, p. 227; Kurzweil, 2005, p. 247; Tegmark, 2017, p. 323).

Artificial Consciousness. Potentially, in the future, when vast computational power will be available, we will be able to create conscious experiences, have fine-grained control over their phenomenal content, and choose this content at will. We will gradually explore the vast space of possible conscious experiences, as discussed above. Additionally, this means that we will be able to record and replicate the experiences we create, just as we do with audio recordings today.

Further, it is thought by some to be possible to replace the substrate of a conscious system by gradually replacing its computational units, such that, for example, a biological brain could be transformed into a computer by replacing neurons with digital circuits neuron by neuron, while its consciousness would remain uninterrupted—this is what consciousness philosopher David Chalmers describes in his Fading Qualia thought experiment (Chalmers, 1995b). And that transformed system could then be further transformed to accommodate a broader scope of phenomenal properties. In this way, conscious systems could dynamically evolve over the course of their lifetime, exploring new horizons of subjective experience each time.

In addition to this, highly precise, high-bandwidth neural interfaces are being developed already today (BlackRock Neurotech, n.d.; Synchron, n.d.; Paradromics, n.d.; Neuralink, n.d.). Some of the companies that develop such interfaces explicitly aim at ultimately developing a whole-brain neural interface (Neuralink, 2025). In the future, nanotechnologies may be used to create whole-brain neural interfaces by non-invasively injecting nanorobots into the bloodstream, allowing them to access and control individual neurons from the inside (Kurzweil, 2005, p. 227). All this opens up the possibility to view consciousness itself as a medium for art.

Consciousness as an Artistic Medium. If we assume the possibility to create conscious experiences at will, as discussed above, *phenomenal properties of these experiences become means of expression*. They can be determined by more abstract ideas, by ideas about the general character of an experience and about the dynamics of its development in time and its various properties and so on.

The creator of artificial subjective experience can be driven by the question: “Which phenomenal properties do I want the experience to have?” rather than by the question: “What traditional medium do I want my artwork to be in?” The set of phenomenal properties that our consciousness-creation machinery is able to create is the only limit to the creativity of the creator. Thus, consciousness itself becomes a medium for art.

And the artist constructs experiences out of these phenomenal properties like a music producer constructs a song out of raw timbres and tones and recorded sounds or a graphic artist constructs a piece of art out of colors and shapes and images.

Situating Arts in the Space of Phenomenal Properties. Traditionally, arts are classified into different art forms based on the physical medium they are created in (Walker, 2021; Multimedia Art, 2021; Annemarijn-Ingelaat, 2020). But if we assume the possibility to create experiences and have fine-grained control over the phenomenal content of them, the boundaries between different physical media become irrelevant.

All conscious experiences can be situated in the common space of phenomenal properties. For example, philosopher Sam Harris does something similar in his concept of “the moral landscape” (Harris, 2010). This space should be thought of as including all the phenomenal properties that are possible in a cosmic-scale civilization, described in previous sections. The experiences, related to the perception of objects of art and artificially created experiences, too, can be situated in this space.

Once we do that, we can study the properties of this space. For instance, Chalmers supposes that subjective experience obeys certain universal laws of nature (Chalmers, 1996, p. 32). For example, when he talks about Fading Qualia, he assumes that the qualia (phenomenal properties) can be in transitional states between the state of existence and non-existence (Chalmers, 1995b). Thus, there must be some general dimensions—axes—in which we can situate different qualia: Chalmers (1995b) talks about the lack of discrimination in the experiences of Joe; how Joe sees “tepid pink and murky brown” where fully conscious system sees “bright red and yellow;” about the lack of intensity and richness in the experiences of Joe. Harris (2010) puts all experiences on the single dimension of suffering and well-being. Also, perhaps, there are some regularities with regards to how different phenomenal properties are interrelated within a single subjective experience.

We can also study different properties of the distribution of different experiences in this phenomenal space. For instance, there will be experiences that overlap with each other, that is, share some phenomenal properties, and those that don’t. For instance, many experiences of biological human minds will share many phenomenal properties.

Experiences, related to the perception of artworks of different traditional art forms will share many phenomenal properties because experiences consist not only from data, coming directly from sense organs—they also include other subjective phenomena, such as, for example, imagination, emotion, memories, etc; and different traditional art forms share sensory data from the same sense organs such as bodily sensation. And those properties, that are not shared in the traditional art forms can be used together in artificially created artistic experiences. Thus, the strict boundaries between the art forms, implied by the traditional classification by physical medium become much blurrier. Entire new art forms might be defined by which phenomenal properties they employ and in what ways. These new art forms, too, might share many of these phenomenal properties and thus boundaries between art forms become much blurrier in this case too.

Generalizing Music to Other Conscious Systems and Searching for New Art Forms. When one considers the possibility of existence of a vast number of conscious systems beyond biological human brains, question arises with regards to the place of music among all these systems. Is music an art form, characteristic of only human brains or does it encompass a greater scope of conscious systems?

When we ask whether music exists in conscious systems beyond human brains, we unavoidably refer to the concept of music as it is conceived in the context of human brains. But it is possible that human brains are only a tiny special case of music, if we describe this concept in the context of all conscious systems in which it exists. Is it possible that the concept of music, as it is described in the context of all conscious systems in which it exists, doesn’t exist in systems that are human brains? In such a case, the word “music” would attain a qualitatively different meaning

than the meaning we apply to it in the context of human brains. In such a case, it would not make sense to use the word “music,” because it would have profoundly different meaning than the meaning we are used to ascribing to it.

But the following could be an interesting research purpose: to search for new landscapes of art, considering art in the light of all possible conscious systems. In light of such a purpose, both generalizing music as an art form and searching for new art forms are interesting projects. And it is possible that explorations in the former area can lead us to insights in the latter area and vice versa.

On the one hand, if we are to give the term “music” any meaning, this meaning should encompass those human experiences, which are conventionally interpreted as musical in our culture—ascribing this term to a phenomenon which doesn’t include these experiences would profoundly change the meaning of the word. Therefore, for a certain experience in a foreign conscious system to qualify as musical, it should satisfy certain conditions, albeit generalized, determined by these biological human experiences. On the other hand, in the search of new landscapes of art, it is undesirable to limit ourselves by defining the scope of our search as constrained by the conditions of these biological human experiences.

It is also worth noting that art forms are hypothetically possible, which are not music but are close to music and intersect with it in the space of phenomenal properties.

The question of whether music extends to conscious systems, distinct from biological human brains, can be formulated in the following way: Where is music situated in the space of phenomenal properties? Is it necessary that a system to which music extends shares all the phenomenal properties with biological human brains or is it possible that it shares only some of them or even none?

To answer these questions, we could start with an experience, related to the perception of a piece of music as a piece of music is traditionally conceived and then try to gradually abstract away from it to more general characteristics of experiences that still apply to the original experience but also to a number of experiences that contain phenomenal properties that biological human brains’ experiences don’t.

First, we might try to rid ourselves of sound. Some people, when they talk about music, talk about sound as a foundational part of it (Kania, 2011; Scruton, n.d.). But is it really such a foundational part? While I understand that hardly anyone would state that music is *just* about sounds, I would like to emphasize that it is about an entire world of subjective phenomena, which we experience when we listen to these sounds. These include, among other things, emotions, imagination, memories, a feeling of motion in space, etc. It is precisely such phenomena that are the most important thing in music.

Now, one might say that when watching movies we, too, experience emotions, motion and imagination. And thus, defining music in these sole terms, without reference to sound, is not useful and too broad. But in movies, the temporal dynamics, intensity, variability and other properties of these phenomena are different. And I can ask the converse question: isn’t tying the definition of music to sound too strict?

We can imagine a device—a computer with a neural interface—that stimulates all the same subjective phenomena as music does, with the same temporal dynamics, intensity, variability and other properties, but does this without sound. Would a definition of music that includes these experiences as musical be too loose? Perhaps—yes, and it would make more sense to interpret these experiences as belonging to a different art form, albeit one that shares many phenomenal properties with music. But I’m not completely sure about this.

And this is a profound question for any project that tries to come up with a definition of music. In the end, it might be that such a project is unattainable at the current stage: only when we have studied subjective experience in general and experience of sound and music in particular

thoroughly with the tools of neuroscience will we be able to ask which experiences should be interpreted as musical.

Thus, if a musical experience without sound is possible, then we can say that music extends to conscious systems that don't perceive sound—but, at this point in our abstraction process, they still have to perceive emotions, imagination, memories, etc., as they are conceived in biological human brains.

Now, we might also suggest that what's important in our experience of traditional music is not even the specific phenomenal properties it consists of, but its overall properties and dynamics. For example, one might imagine a conscious system that has profoundly different mechanisms of receiving information from the environment than our sense organs, or no such mechanisms at all, only perceiving information that exists inside the system. Or, even further along, we might imagine an experience, consisting of entirely different phenomenal properties than our original musical experience, but that has approximately the same number of them, the same temporal dynamics and dynamics of intensity and variability, etc. Such an experience might be considered musical. Thus, we can say that music extends even to conscious systems that don't share any phenomenal properties with humans.

To take this even further, one might imagine an experience that has even a greater number and intensity and variability of phenomenal properties, a greater complexity of the experience and temporal dynamics that still resemble the original experience but also incorporate the greater number and degrees of freedom of the phenomenal properties it consists of. Thus, conscious systems with a greater scope of phenomenal properties and mental processes than biological humans can experience music.

Finally, we can conceive of a possibility that the temporal scale can be altered as long as the proportions of the interrelations between events in time are preserved.

Conclusion. We are standing on the brink of a new era of human existence, where biological humans will expand their intellectual capabilities and the spectrum of their subjective experience through neural interfaces and through migration into a technological substrate.

The framework of the space of phenomenal properties demonstrates the potential for artistic expression in the realm of artificial consciousness, for the existence of a myriad of entirely new art forms, and for new approaches to thinking about and classifying arts. Our thinking about music, too, is influenced by this framework, namely, we can ask, where is music situated in this space of phenomenal properties? How does music generalize to a myriad of conscious systems in this space? Does sound play a crucial role in music or can music exist also without it?

In light of these considerations, it is reasonable to begin researching these topics now. This can be done through methods from fields such as neuroscience—for example, mapping the space of phenomenal properties by identifying neural correlates of consciousness, particularly those related to the perception of sound and music; philosophy of mind—by addressing questions such as how to represent phenomenal properties of experience in general and in relation to sound and music specifically, or what contradictions arise between naturalistic dualism and physicalism; and philosophy of music—by asking whether a complete definition of music can be determined at present, what role sound plays in such a definition, and how music might generalize across the wide range of conscious systems in the space of all possible phenomenal properties.

References

Annemarijn-Ingelaat. (2020, March 25). *What Is Interactive Art?* Privéekollektie Contemporary Art. Retrieved from <https://www.priveekollektie.art/2020/03/25/what-is-interactive-art/>

BlackRock Neurotech. (n.d.). *BlackRock Neurotech*. Retrieved from <https://blackrockneurotech.com/>

Chalmers, D. J. (1995a). Facing Up to the Problem of Consciousness. *Journal of Consciousness Studies*, 2(3), 200–219.

Chalmers, D. J. (1995b). Absent Qualia, Fading Qualia, Dancing Qualia. In T. Metzinger (Ed.), *Conscious Experience* (pp. 309–328). Ferdinand Schöningh.

Chalmers, D. J. (1996). *The Conscious Mind: In Search of a Fundamental Theory*. Oxford University Press.

Chalmers, D. J. (2010). *The Character of Consciousness*. Oxford University Press.

Deutsch, D. (2011). *The Beginning of Infinity: Explanations That Transform the World*. Viking Penguin.

Harris, S. (2010). *The Moral Landscape: How Science Can Determine Human Values*. Free Press.

Kania, A. (2011). Definition. In T. Gracyk & A. Kania (Eds.), *The Routledge Companion to Philosophy and Music* (pp. 3–13). Routledge.

Koch, C. (2019). *The Feeling of Life Itself: Why Consciousness Is Widespread but Can't Be Computed*. MIT Press.

Kurzweil, R. (2005). *The Singularity Is Near: When Humans Transcend Biology*. Viking Penguin.

Kurzweil, R. (2024). *The Singularity Is Nearer: When We Merge With AI*. Viking.

Multimedia Art. (2021, April). *The Social Stays*. Retrieved from <https://www.thesocialstays.com/blogs/art-term/multimedia-art>

Nagel, T. (1974). What Is It Like to Be a Bat? *The Philosophical Review*, 83(4), 435–450. DOI: <https://doi.org/10.2307/2183914>

Neuralink. (2025, June 18). *Neuralink Update, Summer 2025* [Video]. YouTube. Retrieved from https://www.youtube.com/watch?v=FASMejN_5gs&t=1410s

Neuralink. (n.d.). *Neuralink*. Retrieved from <https://neuralink.com/>

Paradromics. (n.d.). *Paradromics*. Retrieved from <https://www.paradromics.com/>

Scruton, R. (n.d.). *Music and Cognitive Science*. Retrieved from <https://www.roger-scruton.com/component/content/article/31-understanding-music/183-music-and-cognitive-science?Itemid=101>

Synchron. (n.d.). *Synchron*. Retrieved from <https://synchron.com/>

Tegmark, M. (2014). Consciousness as a State of Matter. *Chaos, Solitons & Fractals*, 76, 238–270. DOI: <https://doi.org/10.1016/j.chaos.2015.03.014>

Tegmark, M. (2017). *Life 3.0: Being Human in the Age of Artificial Intelligence*. Alfred A. Knopf.

Walker, S. (2021, October 26). What Are the 7 Forms of Art? *Contemporary Art Issue*. Retrieved from <https://www.contemporaryartissue.com/what-are-the-7-forms-of-art-a-complete-overview/>

Богдан Булка

МУЗИКА У ПРОСТОРИ УСІХ МОЖЛИВИХ СВІДОМИХ ПЕРЕЖИТТІВ

Анотація. Автор вибудовує фундамент для обговорення простору можливих свідомих пережиттів космічного масштабу. Він вводить читача у принципи, що стоять за баченням космічного потенціалу розумної цивілізації. У ядрі такої цивілізації лежить технологія обчислення. Автор демонструє, що свідомість може виникати у субстратах, відмінних від біологічних людських мізків, зокрема, у комп’ютерах. Тож він приходить до висновку, що, рано чи пізно, можливим стане простір свідомих пережиттів космічного масштабу і що розумні істоти матимуть детальний контроль над феноменальним змістом цих пережиттів. Автор стверджує, що ця перспектива представляє виклики у таких областях, як філософія мистецтва та музики. Наприклад, критичного переосмислення вимагає традиційний підхід до класифікації мистецтв на основі фізичних медіумів, у яких створені твори мистецтва. Автор висуває фреймворк для систематизації усіх можливих свідомих пережиттів, включаючи пережиття, пов’язані зі сприйняттям творів традиційного мистецтва, і застосовує цей фреймворк до питання узагальнення музики до великої кількості інших, небіологічних, свідомих систем.

Ключові слова: визначення музики, філософія музики, філософія свідомості, філософія мистецтва, інформаційні технології.